See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/358189372

Savannas are vital but overlooked carbon sinks

Article in Science - January 2022
DOI: 10.1126/science.abn4482

33 authors, including:

J. Grant C. Hopcraft
University of Glasgow
58 PUBLICATIONS 3,640 CITATIONS

John M Fryxell
University of Guelph
220 PUBLICATIONS 13,463 CITATIONS

Joseph O Ogutu
University of Hohenheim
240 PUBLICATIONS 5,518 CITATIONS

Todd Michael Anderson
Wake Forest University
117 PUBLICATIONS 6,002 CITATIONS

Some of the authors of this publication are also working on these related projects:

Quantitative Analysis of Forest Fragmentation in the Atlantic Forest Reveals More Threatened Bird Species than the Current Red List View project

Biotically driven heterogeneity through opposing forces, bioturbation & biocompaction View project
Savannas are vital but overlooked carbon sinks

On the second day of the 2021 United Nations Climate Change Conference (COP26), 130 nations announced a decision to halt global deforestation by 2030 (1). This is a welcome move and a political success, but ecologically it falls short. The plan needs to be expanded to include savannas, which cover an area of 20 million km²—more than the 17 million km² covered by tropical forests (2)—and are potentially more important carbon sinks than forests.

In the course of a year, each hectare of the Serengeti plains in Tanzania removes between 5000 and 20,000 kg of carbon dioxide (3) from the atmosphere, enough in total to offset every airline flight to East Africa and all the emissions produced in the region (4, 5). The repeated grazing of wildebeests, zebras, and a variety of insects (6) stimulates vegetative growth multiple times within a year (7, 8), which considerably increases the volume of carbon dioxide absorbed from the atmosphere. Wildlife feeces and carcasses enrich the store of carbon and nitrogen in the soil.

The Serengeti and other tropical and temperate savannas, which store carbon in the soil rather than in the biomass of trees (4), can capture at least as much carbon as tropical forests if managed correctly (9, 10). They are as threatened as tropical forests by agriculture expansion and land clearing. Like tropical forests, they are crucially in need of protection (11, 12); excessive grazing and fires are diminishing the abundance of wild herbivores and thus their potential to store carbon (8, 10). Substantial amounts of biodiversity, as well as many pastoralist peoples, depend on savannas. They also generate employment and foreign currency through tourism (5).

The parties to United Nations Framework Convention on Climate Change must be bolder in their approach to climate change. Declared goals must include both forests and savannas. Moreover, target dates should be set as soon as possible. Even 2025 may be too late to save the vulnerable forest and savanna ecosystems that provide the only fully scalable natural solution to remove carbon dioxide from the atmosphere.

Andy Dobson1, Grant Hopcroft2, Simon Mduma3, Joseph O. Ogutu4, John Fryxell5, T. Michael Anderson6, Sally Archibald7, Caroline Lehmann8, Joyce Poole9, Tim Caro10, Monique Borgerhoff Mulder11, Robert D. Holt12, Joel Berger13, Daniel I. Rubenstein1, Paula Kahumbu14, Emmanuel N. Chidumayo14, E. J. Milner-Gulland14, Dolph Schluter15, Sarah Otto14, Andrew Balmford10, David Wilcove14, Stuart Pimm15, Joseph W. Veldman16, Han Off17, Reed Noss18, Ricardo Holdo19, Colin Beale20, Gareth Hempson21, Yustina Kiwango22, David Lindenmayer23, William Bond24, Mark Ritchie25

Anthony R. E. Sinclair26

1Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
2Glasgow University, Glasgow, UK.
3Tanzania Wildlife Research Institute, Arusha, Tanzania.
4University of Hohenheim, Stuttgart, Germany.
5University of Georgia, Queens, ON N5G 2W1, Canada.
6Wake Forest University, Winston-Salem, NC 27109, USA.
7University of the Witwatersrand, Braamfontein, Johannesburg, 2000, South Africa.
8Tropical Diversity, Royal Botanical Gardens, Edinburgh EH35LR, UK.
9School of Geosciences, University of Edinburgh, Edinburgh EH39FF, UK.
10ElephantVoices, San Francisco, CA 94111, USA.
11University of Bristol, Bristol BS8 1TH, UK.
12Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
13University of Florida, Gainesville, FL 32611, USA.
14Colorado State University, and Wildlife Conservation Society, Fort Collins, CO 80523, USA.
15Wildlife Direct, Karen 00502, Nairobi, Kenya.
16Zambian National University, Lusaka, Zambia.
17Department of Zoology, Oxford University, Oxford OX1 3ZQ, UK.
18University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
19Cambridge University, Cambridge CB2 1JE, UK.
20Duke University, Durham, NC 27708, USA.
21Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843-4401, USA.
22University of Groningen, 9712 CP Groningen, Netherlands.
23Florida Institute for Conservation Science, Oviedo, FL 32765, USA.
24University of Athens, Athens, GA 30612, USA.
25University of York, Heslington, York YO10 5DD, UK.
26Tanzania National Parks, Arusha, Tanzania.
27Australian National University, Canberra, ACT 0200, Australia.
28University of Cape Town, Rondebosch, Cape Town, 7700, South Africa.
29Syracuse University, Syracuse, NY 13244, USA.
30Corresponding author.
Email: debber@princeton.edu

REFERENCES AND NOTES


10.1126/science.aba6022
Savannas are vital but overlooked carbon sinks

Andy Dobson Grant Hopcraft Simon Mduma Joseph O. Ogutu John Fryxell T. Michael Anderson Sally Archibald Caroline Lehmann Joyce Poole Tim Caro Monique Borgerhoff Mulder Robert D. Holt Joel Berger Daniel I. Rubenstein Paul Archibald

Science, 375 (6579), • DOI: 10.1126/science.abn4482

View the article online
https://www.science.org/doi/10.1126/science.abn4482
Permissions
https://www.science.org/help/reprints-and-permissions