

Challenges of restoration of grassland and savannah ecosystems

Barron Joseph Orr, Lead Scientist

World Wildlife Fund 15.05 – 16.00 Restoration 29 September 2020

Local challenges

Local changes in livestock utilization, disease, fire management, invasive species, abundance of predators, consumption by people, and habitat loss due to land conversion for agriculture and settlement

Invasive species

- Invasive species can **displace native plants** prior to restoration, and they can outcompete natives during restoration.
- Invasive species can **change the natural disturbance regimes** (such as the intensity, frequency and seasonal time of wildfires), thus resulting in further grassland or ecosystem habitat loss.

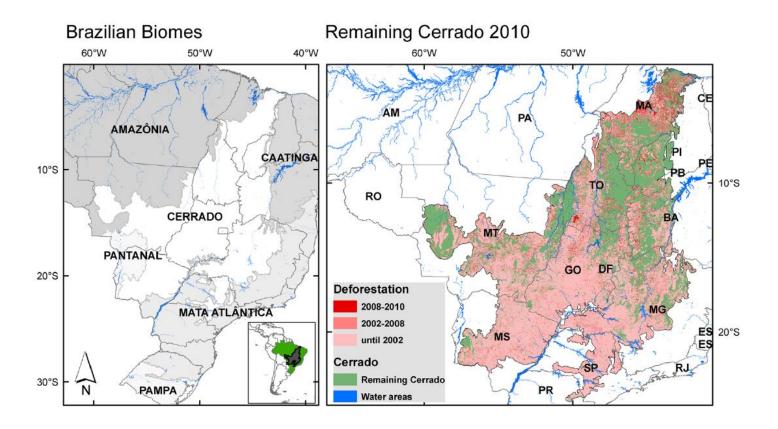
Grassland & savanna restoration challenges

Global shifts in climate, human population growth, and the changing structure of socio-economic systems (e.g., globalization, consumption patterns, diet, migration, exurbanization) are changing the structure and function of grassland and savanna ecosystems

Systemic challenges

- High levels of poverty, low levels of investment, poorly adapted policies
- Heterogeneous resources and seasonal availability on a vast scale
- Complex governance arrangements, which are weakening
- Increasing exposure to natural hazards due to climate change, biodiversity loss and land degradation
- Data are scarce and adaptations are poorly understood (e.g. herd mobility, fire management, water management, land tenure)

An example: Land use change in the Brazilian savanna



An example: Land use change in the Brazilian savanna

Restoration is hard!

- Restoration is important for biodiversity conservation worldwide, but surprisingly little is known about its efficiency in a long-term perspective
- Ecosystem structure can often be restored to some degree, but underlying ecosystem functions and processes take much longer
- Similar story for biodiversity overall species composition in restored sites can resemble reference conditions
- However, total species richness, while increasing over time, often does not reach reference levels

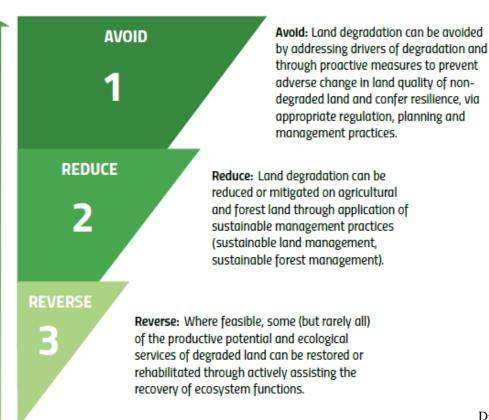
Opportunities increase the potential for success

- Ramping up native seed production
- Recognizing the importance of soil legacy, soil biodiversity and soil conditioning
- Employing methods to increase invasion resistance and the reintroduction of disturbance regimes (e.g., controlled burning)
- Being open to interventions designed to increase native perennial grasses over exotic grasses (e.g., low-cost grazing, herbicide, and seeding treatment)s
- Being open to approaches that **link restoration to sustainable value changes** such as coupling habitat restoration with biofuel production

Opportunities to increase the scale of impact

- Spatial prioritization of grassland/savanna restoration and reintroduction of grazing and fire
- Finding creative approaches to **increase the spatial scale** at which fire and grazing can be applied to address watershed to **landscape-scale objectives**
- Developing partnerships among government agencies, landowners, businesses, and conservation organizations that enhance cross-jurisdiction restoration and management in grassland landscapes with an aim for multiple benefits

Creating an enabling environment



- Evidence-based and participatory decision making
- Effective institutions for communal resource governance on a large scale
- Active management of livestock herd movements to optimise the relationship between animals and vegetation
- Incentives for both livestock production and environmental stewardship
- Access to markets for diverse goods and services

Prevention is better than the cure

"Saving what remains is far more straightforward, economical, and effective than trying to re-establish what has been lost."

Packard and Mutel (1997)

Diagram Source: UNCCD 2017

Scientific Conceptual Framework for Land Degradation Neutrality

Pay attention to the science!

- There is no ``quick fix'' for the establishment of a grassland or savanna
- Ensure that the ideas and approaches being used are based on an up-to-date understanding of how ecosystems are put together and function
- Understand that grassland and savannas are complex dynamic systems in which nonlinearity, historical dependence, and unpredictability are often major features.
- This means **restoring processes** must be considered simultaneously (or even before!) restoring structure.
- **Long-term monitoring** is critical. It provides useful information on the trajectory of community development, allowing for course corrections.
- And before restoring, be sure to address the drivers of ecosystem degradation.

Sources: Falk et al. 2006; Bautista et al. 2010; Smith et al; 2017

Thank you!

Web: www.unccd.int

Twitter: @UNCCD

Facebook: www.facebook.com/UNCCD

