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(Received 10 April 2015; accepted 31 May 2015)

The tropical forest cover has varied greatly over the last few decades. The rapid advance of
agricultural crops and illegal clearings in natural areas has resulted in the conversion of the
majority of the world’s forest into desolated patches. Although rates of deforestation have
decreased compared to previous years, forest loss still remains a crucial concern. Latest
studies conducted on a global scale identified the Latin American continent as one of the
regions exhibiting the highest rates of deforestation in the world. The dynamics of forests
over the past 40 years has attracted numerous remote-sensing-based studies tomonitor forest
loss, analyse patterns, and understand the drivers of land conversion. This review article
provides a comprehensive overview of the remote-sensing-based studies of tropical forest
dynamics in Latin America. Following an introduction with respect to global forest mapping
products, a general outline of tropical forest ecoregions and drivers of deforestation in Latin
America is provided. Subsequently, a review and categorization of the existing studies is
presented, where focus is laid on selected sensors and data analysis methodologies apply.
Furthermore, a case study for the whole of Paraguay is presented; Paraguay is a region
which contains highly diverse ecosystems that have been ravaged as a result of deforestation
over the past 40 years. The main results, challenges, and future needs are discussed.

1. Introduction

Tropical forest ecosystems around the world are immensely important. Their unques-
tionable role as a key component of climate regulation, biochemical cycles, and biolo-
gical diversity (Joseph, Murthy, and Thomas 2011) has led to concerns about their future
and protection. The rapid advance of deforestation over recent decades has resulted in
the conversion of the majority of the world’s tropical forest into isolated patches,
endangering not only their continuity but the biodiversity within them. Deforestation
has been defined by FAO (2007) as the decrease of the tree canopy below 10%
boundary, due to the conversion of forests to another land use such as farms, ranches,
mines, or urban sites. Degradation, on the other hand, is described as the decrease of the
canopy cover within the forest, provided that the canopy stays above 10% (FAO 2001).
Between the years 1990 and 2005, Latin America lost 69 Mha of forest, which is
equivalent to 7% of the forest cover of the region. Moreover, this region contains one
of the highest numbers of endangered tree species worldwide (FAO 2007). The latest
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studies conducted on a global scale identified Argentina, Paraguay, and Brazil as the
regions exhibiting the highest rates of deforestation in Latin America (Hansen et al.,
2008). Although rates of deforestation have decreased in comparison with previous
years, the process still remains an ongoing threat. In order to halt the predation of forest,
several strategies, decisions, conventions, and monitoring programmes were carried out
in an international context. The Millennium Development Goals (MDGs), the UN
Convention on Biological Diversity (CBD), the UN Convention to Combat
Desertification (UNCCD), UN Forum on Forests (UNFF), UN Global Compact
(UNGC), the Global Environment Facility (GEF), the United Nations Framework
Convention on Climate Change (UNFCCC), and the mechanism for Reducing
Emissions from Deforestation and Degradation (REDD+) are some of the programmes
and strategies implemented (Rautner, Leggett, and Davis 2013). For instance, the
international REDD+ negotiations sponsored by the UNFCC have provided methodo-
logical guidance on the REDD+ programme since 2005 through conservation of forest
carbon stocks, sustainable forest management, and improvement of the carbon stocks in
developing countries (Potapov et al. 2014). Following this, efforts of governmental and
non-governmental institutions in Latin America such as the Instituto Nacional de
Pesquisas Espaciais (INPE), Universidad Federal de Paraná, Universidad de Buenos
Aires (UBA), Sistema de Información Ambiental de Colombia (SIAC), Centro
Agronómico Tropical de Investigación y Enseñanza (CATIE), World Wildlife Fund
(WWF), Guyra Paraguay, Red Agroforestal Chaco Argentina (Redf), and the
Proyungas have all contributed over the years to monitoring and, where necessary,
informing the relevant bodies of illegal deforestation activities (Sesnie et al. 2008;
Hutchison and Aquino 2011). Numerous approaches were developed over the last few
decades to understand the current dynamics of forests. The use of Earth Observation
(EO) data to monitor forest has supported other methodologies such as ground forest
inventories, primarily due to their lower cost and easier accessibility (Fagan and Defries
2009). Satellite-based measurements offer monthly or daily data, unbiased measure-
ments, and the capability to synthesize large amounts of data. For example, the inclusion
of remote-sensing technologies has more recently become crucial in the support and
assessment of environmental programmes such as REDD+, an initiative which endea-
vours to protect the integrity of remaining forests (Fagan and Defries 2009; Gebhardt
et al. 2014; Hosonuma et al. 2012; Kuenzer, Ottinger, et al. 2014; Potapov et al. 2014).

This article provides a comprehensive review of the approaches that have been
implemented to study the changes in tropical forests in Latin America using remote-
sensing technology. The context of the articles reviewed varies in scale from the con-
tinental to the local scale, covering almost all the countries in Latin America. A particular
focus was given to the Atlantic Forest in Paraguay, which is considered to be one of the
most threatened rain forests in the world; this is a highly diverse ecosystem that unfortu-
nately has been ravaged over the past 40 years (Huang et al. 2007, 2009). Considerations
are given to variations solely induced by anthropological activities, with particular
emphasis on the deforestation and degradation process. The goal of this review article
is to assess, analyse, categorize, and discuss all the studies which have integrated EO data
to study the dynamics of tropical forests in Latin America, and to present how the studies
are distributed, which sensors have been applied at which spatial and temporal resolution,
which are the most prominent forest cover change detection techniques, and which
variables are employed to reach high-accuracy results. Furthermore, current needs, chal-
lenges, research gaps, and future trends are discussed.
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2. Global forest cover mapping approaches

Remote-sensing data have been crucial in numerous studies to obtain especially accurate
information about the distribution, state, and composition of forests at a global scale
(Hansen et al. 2002, 2008; Mayaux et al. 2005; Fagan and Defries 2009). Tucker,
Townshend, and Goff (1985) created the first continental map of land cover applying
4 km satellite imagery from the Advanced Very High Resolution Radiometer (AVHRR).
Loveland et al. (2000), under the funding of the International Geosphere–Biosphere
Programme (IGBP), delivered the first pan-continental map at 1.1 km for the period
between 1992 and 1993; different from Tucker, Townshend, and Goff (1985) forest covers
that were stratified according to their leaf type. A following study conducted by Hansen
et al. (2000) applied the same data to produce a new legend. Additionally, the European
Commission’s Joint Research Center (JRC), in cooperation with several other institutions,
generated the ‘GLOBAL Land Cover 2000’ (GLC2000) product by using Satellite Pour
l’Observation de la Terre (SPOT)-4 Vegetation data from the year 2000 (Bartholomé and
Belward 2005). This product identified multiple forest classes and densities. Moreover,
under the initiative of the GLOBCOVER programme, a higher-resolution land-cover map
of 300 m was obtained by means of Europe’s Medium Resolution Imaging Spectrometer
(MERIS) data for 2005–2006, which contains several global classes at the global scale
(Arino et al. 2007).

Subsequently, additional efforts were put into the global mapping of forest cover,
specifically. Hansen et al. (2004) produced a global subpixel tree cover map and vegeta-
tion continuous field (VCF) using Moderate Resolution Imaging Spectroradiometer
(MODIS) data, with a spatial resolution of 500 m × 500 m. Consequently, international
programmes such as The Global Forest Resources Assessments (FRA) 2000 and TREES
were carried out to assess tropical forest cover extent and dynamics with a special focus
on the humid tropical forest. Both programmes used National Oceanic and Atmospheric
Administration (NOAA)-AVHRR data with a spatial resolution of 1 km × 1 km and
Landsat images as sample frames for forest cover characterization. While the FRA
programme aimed to identify forest cover and forest cover change globally, the TREES
programme targeted deforestation hotspots within humid tropical forest (Mayaux et al.
2005).

The results obtained by the FRA 2000 initiative were improved in a following
programme called FRA 2010, which considered deforestation hotspots in a preliminary
step in order to determine deforestation rates (Pacheco, Aguado, and Mollicone 2014),
applying the same systematic sampling methodology developed by TREES II (FAO
2012).

Later investigations have yielded more accurate data than previous global maps,
owing primarily to the increased spatial resolution of imagery such as Landsat and the
Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic
Aperture Radar sensor (PALSAR), which offer a better understanding of forest cover
change over time. For instance, a team of researchers from the University of Maryland
generated a global forest cover map using Landsat images with a resolution of 30 m
(Hansen et al. 2013). The study processed over 650,000 images using the computing
power of the Google Earth Engine in order to quantify forest gain and loss over the entire
globe between the years 2000 and 2012 (see Figure 1; Hansen et al. 2013). Similar to
Hansen et al. (2013), Gong et al. (2013), under the Finer Resolution Observation and
Monitoring of Global Land Cover (FROM-GLC) project, produced the first global
land-cover map with a resolution of 30 m based on Thematic Mapper (TM) and
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Enhanced Thematic Mapper Plus (ETM+) data derived from Landsat satellites. The
global data produced in the most recent years (FAO 2012; Hansen, Stehman, and
Potapov 2010) have been used extensively by policymakers, non-governmental organiza-
tions (NGOs), and scientists as a baseline tool for forest cover estimation around the
world (Puyravaud 2003; Mather 2005; Mayaux et al. 2005; Achard et al. 2007, 2010).
This information allowed the authors to discuss policies, environmental programmes such
as the Payment for Ecosystem Services (PES) under REDD+, and conservation initiatives
which aim to promote the protection of the remaining forests. Even though the accuracy
of the global products was widely discussed by several authors (Steininger, Tucker,
Townshend, et al. 2001; Sánchez-Cuervo et al. 2012; Kuenzer, Leinenkugel, et al.
2014; Brovelli et al. 2015; Leinenkugel et al. 2015), a general overview of the distribu-
tion of forests around the globe can be obtained from these products. An overview of the
products is presented in Table 1.

3. Tropical forest cover change in Latin America

According to FAO (2010), taking into account reforestations, the world’s entire forest
cover area, has an extent of 4000 Mha – corresponding to almost 31% of the global land
surface. Latin America and the Caribbean possess 22% of the world’s forest, with an
approximate area of 860 Mha. A further breakdown of these figures shows that 831.5 ha
are located in South America (97%), 22.4 Mha in Central America, and 5.9 Mha in the
Caribbean region (Pnuma and Cathalac 2010). This region is considered to be one of the
most bio-diverse areas on the planet containing 33% of the world’s total mammals, 35%
of the reptile species, 41% of avian species, and 50% of amphibians. The vast majority of
forest cover is distributed throughout South America. This includes the Amazonian Basin

Figure 1. (a) Deforestation rates in Latin America based on the total surface of the country (2000–
2012). (b) Total area deforested in Latin America between 2000 and 2012 (Hansen et al. 2013).
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– the world’s largest rain forest, with over 20 types of rainforest ecosystems (Pnuma and
Cathalac 2010). Furthermore, the Coordinator of Indigenous Communities from the
Amazonian Basin (COICA) estimates that almost 390 indigenous communities with
2.78 million inhabitants are residing in the area (Cordero 2011).

Despite high levels of biodiversity and its importance in terms of ecological resources,
the humid tropical forest in Latin America still remains under threat. Internal and external
drivers, which include the constant increase in global population and consumption per
capita, have direct effects on the forest (Morton et al. 2006). Large multinational compa-
nies, land grabbing, and lack of polices and law enforcement are some of the most
prominent drivers in tropical deforestation (Rautner, Leggett, and Davis 2013).

3.1. Forest ecoregions and drivers of deforestation

The following characterization of tropical forest in Latin America is based on FAO (2001)
terrestrial ecoregions, generated predominantly through a collection of data provided by
each country. The FAO 2000 product provides not only a general overview of the
distribution of the various forest types throughout Latin America (see Figure 2) but also
a general description of each ecoregion. Moreover, the current work only considers

Figure 2. (a) Tropical forest cover distribution of Latin America (source: base layers adapted from
MERIS GlobCover Project (v.2.2), 2008, FAO FRA 2000 Program (Fao 2001) and Natural Earth
(2014)). (b)–(e) Precipitation diagrams for selected locations (Hijmans et al. 2005).

International Journal of Remote Sensing 3201
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tropical forest ecoregions: tropical rain forests, tropical moist deciduous forests, tropical
dry forests, and tropical mountain domains (see Figure 2).

The largest ecoregion in Latin America is represented by tropical rain forest, which
extends to approximately 37% of the South American territory and which covers 2% of
Central America (FAO 2001). The Latin American climate varies considerably from south
to north. Whilst annual temperatures range from 20°C to 30°C in the south, further north it
only reaches a maximum of 26°C. Rainfall, on the other hand, is more frequent in South
America, especially in the Amazonian region, varying from 1500 to 3000 mm per year.
Vegetation is dominated by evergreen and semi-evergreen trees; uneven age forest stands
with canopies reaching almost 40–50 m and a dense sublayer containing trees varying
from 5 to 25 m tall. Tree species such as Cedrela spp., Cordia spp. Ceiba spp., Cordia
spp., and Swietenia macrophylla are distributed from north to south. In spite of recent
efforts from governmental and non-governmental agencies, the tropical rain forests remain
threatened. Illegal logging, agricultural expansion, mining activities, and clearing for
pasture are some of the main deforestation drivers identified (Ichii, Maruyama, and
Yamaguchi 2003; Ferraz, Capão, and Vettorazzi 2006; Matricardi et al. 2007; Hutchison
and Aquino 2011; Aide et al. 2012). For instance, Nicaragua, Honduras, and Peten
Guatemala have been historically exploited, especially their semi-green and ever-green
forests characterized by valuable hard wood species, such as Swietenia macrophylla,
Manilkara, Haematoxylum, and Red Cedar (FAO 2001). Further to the south, Morton
et al. (2006) documented the conversion of 540,000 ha of forest into croplands during
2001–2004 in the state of Mato Grosso, Brazil.

Following the stratification of FAO (2001), tropical moist deciduous forest is the
second largest ecoregion in Latin America. The climate here has similar rates of
precipitation; however, it differs from rain forest because of longer periods of dryness
(FAO 2001; Olson and Dinerstein 2002). Evergreen seasonal or semi-deciduous forest
can be found in drier parts within the outskirts of the Amazonian Basin, Argentina, and
Paraguay which even includes tree species up to 30 m tall. Nevertheless, no continuous
forest stands along the continent, but indeed in patches along with tree savannahs and
shrub lands (FAO 2001). Aspidosperma polyneuron, Balfourodendron riedcianum,
Cedrela spp., and Eschweilera calyculata are prevalent among tree vegetation.
Similar to the ecoregions described above, deciduous forests are highly threatened. In
South America, several authors identified that in Bolivia’s Tierras Bajas region,
20,000 km2 of deciduous forest was converted into croplands from the 1980s to the
late 1990s (Steininger, Tucker, Ersts, et al. 2001; Killeen et al. 2007). Lack of policies
and pressure on food production were identified as the main causes of forest loss
during this period.

The FAO ecoregions of mountain forest systems cover over 11% of the Latin
American continent (FAO 2001). Variations in altitude and wind direction within moun-
tainous regions result in diversity in both climate and vegetation. For instance, in the
highlands of Mexico, broad-leaf forests are more frequent, while in the mountains of
Guatemala, where precipitation is well below 1000 mm annually, tree species formations
including Pinus pseudostrobus and Quercus dominate. Furthermore, dense tall forests
characterized by Oak or Lauraceae species can be found in Costa Rica and Panama at
altitudes ranging from 1600 to 3500 m. Further south in the central and northern Andean
regions, evergreen seasonal forests are spread within altitudes of 3200–3800 m (FAO
2001). Tree species such as Alchornea bogotensis, Burnellia comocladifolia, and
Cinchona cuatrecasasii are common in the Colombian Andes, where the upper montane
forest starts at 1800 m and extends up to 3400 m (FAO 2001). The vast tree species
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diversity and the richness of the soil of mountainous systems result in different drivers of
deforestation. Besides agro-industrial expansion and the illegal logging of valuable tree
species, the forest is under intense pressure by human colonization that goes along with
illegal cropping activities (Viña, Echavarria, and Rundquist 2004; Armenteras et al. 2006;
Etter et al. 2006; Sanchez-Cuervo and Aide 2013). For example, high deforestation rates
were experienced between 2002 and 2007 in the northern Andes Chaco and Amazon
Forest of Colombia, resulting in a loss of 27,952 and 1160 km2, respectively. This was
primarily due to coca plantations (Dávalos et al. 2011). Figure 3 depicts examples of
different patterns of deforestation resulting from different drivers of forest loss.

Extended dry and rainy seasons characterize climate conditions of the last ecoregion:
tropical dry forests. Short and semi-deciduous forest dominates the main stratus of
vegetation formed by leguminous tree species, such as Mimosa, Caesalpinia, and
Acacia (FAO 2001). Alternatively, the Chaco area of South America is characterized by
Schinopsis, Aspidosperma, Chorisia speciosa, Tabebuia impetiginosa, and Ruprechtia
triflora originating from a xerophilous forest (FAO 2001). According to Hansen et al.
(2013), from 2000 to 2012, tropical dry forests in Paraguay, Argentina, and the Bolivian
Chaco were affected by the highest deforestation rates among tropical forest remnants
around the world. This is caused by poor soil conditions and a lack of precipitation
coupled with agricultural practices that have turned many tropical dry forest areas into
focus regions for cattle and ranching activities (Killeen et al. 2007; Gasparri and Grau
2009; Caldas et al. 2013; Mereles and Rodas 2014).

4. Categorization of tropical forest studies employing EO data

For Latin America, a total of 137 articles were found that employed remote-sensing data to
derive tropical forest dynamics. The articles focus on major themes such as global and
continental characterization (19), deforestation (88), degradation (17), and fragmentation
(13). Figure 6(c) presents the percentage of articles which included either degradation or

Figure 3. Deforestation pattern examples from the Atlantic Forest in Paraguay based on Landsat
images from 2003 to 2007. (a) Circle clearing, (b) fishbone clearing, (c) small-scale clearings, and
(d) compact clearings. Patterns were based on Roberts et al. (2002), Huang et al. (2009), and Souza
and Verburg (2010).
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deforestation processes; studies related to fragmentation were counted as deforestation
studies since fragmentation itself is a negative effect of the deforestation process. The
publication period of articles investigated covered time frames from 1989 to 2015.
Whereas the number of articles related to deforestation and fragmentation commenced to
appear in the late 1980s, articles which studied forest degradation did not appear before the
late 1990s. For instance, Skole and Tucker (1993), Alves (2002), Lu, Batistella, and Moran
(2004), Southworth, Munroe, and Nagendra (2004), and Ferraz, Capão, and Vettorazzi
(2006) assessed deforestation and change patterns over the Brazilian Amazon, focusing
on the Rondônia state based on Landsat imagery spanning the years 1978–2002. Souza
et al. (2003, 2005), Matricardi et al. (2005), and Wang, Qi, and Cochrane (2005) analysed
the degraded forest consequence of selected logging operations in Mato Grosso Brazil using
Landsat, SPOT, and IKONOS images covering the years from 1988 to 2006. It is important
to remark that degradation studies increased considerably over the years, apparently follow-
ing the initial stages of development of the REDD programme. The constant difficulties
experienced in the definition and detection of degraded forests are often discussed in these
articles (Asner et al. 2002; Souza et al. 2003, 2005).

4.1. Spatial patterns

The focus regions of the articles reviewed are presented in Figure 4, in which the numbers
of investigations are represented for each country. Nineteen articles were found regarding
the global and continental scale. However, most of the studies were carried out at a
regional and local level. Almost 84% of the articles were concerned with studies carried
out within the South American region. The majority of studies centred on Brazil, with 62
studies focusing on the topics of deforestation, degradation, and fragmentation. Most of
these focused on the Brazilian Amazon, particularly in Rondônia and Mato Grosso states,
where the majority of the disturbances occur. Other regions of South America, on the
other hand, were the subjects of far fewer studies, even though countries such as Paraguay
(four articles), Argentina (three articles), and Bolivia (nine articles) still demonstrated
remarkable rates of deforestation (Hansen et al. 2013). Further north in Central America,
Costa Rica is the subject of the majority of studies (12 studies), many of which focus
especially on dry forest ecosystems. Fewer articles were conducted for other countries
from the same region such as Mexico (4), Guatemala (2), and Honduras (3). The present
review article includes all the countries of Latin America. However, no articles were
found for the regions of El Salvador, Panama, Nicaragua, or Cuba. The general trend
identified is that the distribution of studies could be related either to the availability of
information or to the importance given by the scientific community to a specific region.
While Costa Rica and the Amazon Basin have been specified as main sources of
biodiversity, carbon stocks, and natural resources, other similar regions have not been
given the same importance.

4.2. Applied sensors used to assess forest dynamics

Overall, 17 different satellite sensors were employed by the 137 studies reviewed. The
Landsat sensor appears to be the most frequently used satellite in these studies with 66
articles, followed by MODIS (18 studies) and then AVHRR (12 studies). In addition, 20
articles were gathered which implemented other sensors such as SPOT-4 Vegetation,
MERIS, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER),
The China–Brazil Earth Resources Satellite (CBERS), SPOT (high resolution visible, high
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resolution geometrical), IKONOS, and QuickBird, which were used less frequently either
as a single data set or in conjunction with Landsat imagery. Furthermore, 20 studies
applied radar sensors such as European Remote Sensing Satellite (ERS)-1/ERS-2,
Japanese Earth Resources Satellite (JERS)-1, Spaceborne Imaging Radar (SIR)-C/X,
ALOS PALSAR, RADARSAT 2, and COSMO Sky Med to assess deforested areas
principally in the Brazilian Amazon (see Figure 5(b)). Since the Amazonian region is
characterized by high cloud cover, radar sensors that can penetrate clouds have been
favoured in many cases. Most of the studies which evaluated the dynamics of forests at a
continental or global scale were based on coarse-resolution data (MODIS and AVHRR)
(DeFries, Hansen, and Townshend 2000; FAO 2001; Hansen et al. 2003; Clark et al.
2010), whereas only a few recent studies (Hansen et al. 2013; Shimada et al. 2014)
integrated medium-resolution data (Landsat, ALOS PALSAR) to assess changes in the
forest at a global scale. For example, Clark, Aide, and Riner (2012) produced an annual
land-cover map to analyse the changes exhibited in the dry Chaco ecoregion of South

Figure 4. Country focus of studies reviewed. The number of studies per country is represented in
parentheses (base layer source: Natural Earth 2014).
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America (Paraguay, Argentina, and Bolivia) based on MODIS imagery from 2001 to
2007.

As demonstrated in Figure 5(a), the dominant sensor applied in the majority of the
studies is the Landsat sensor including the Multi-Spectral Scanner (MSS) sensor, the
TM sensor, the ETM+, and the Operational Land Imager (OLI). The Landsat pro-
gramme started as a joint initiative of the United States Geological Survey (USGS) and
the National Aeronautics and Space Administration (NASA). The sheer volume of data
available (since 1972), free acquisition, and the favourable spatial (79–30 m), temporal
(16 days), and spectral resolution (0.45–0.90 μm) have turned the Landsat sensors into
the main source of information for numerous monitoring programme studies (Fagan
and Defries 2009). According to the articles reviewed, Landsat images were mostly
applied in studies focusing on the monitoring of deforestation (Van Laake and
Sánchez-Azofeifa 2004; Hayes and Cohen 2007; Alves et al. 2009), followed by
studies focusing on degradation (Almeida-Filho and Shimabukuro 2002; Souza,
Roberts, and Monteiro 2005; Matricardi et al. 2005) and fragmentation (Steininger,
Tucker, Ersts, et al. 2001; Hansen et al. 2000; Cayuela, Benayas, and Echeverría 2006).
Additionally, some studies integrated Landsat imagery with different sensors such as
IKONOS, CBERS, ALOS PALSAR, and SPOT in the case of validation, shortage of
free-cloud data, or to increment the temporal resolution. For instance, Vollmar et al.
(2013) and Ichii, Maruyama, and Yamaguchi (2003) integrated ALOS AVNIR 2 (10 m
resolution) and AVHRR (1 km) images to perform multi-temporal cover change
analysis, at both regional and continental levels. Both studies intended to fill the
missing data from Landsat ETM+. Wang, Qi, and Cochrane (2005) used IKONOS 1-
m pansharpened imagery to validate canopy fractional cover maps resulting from ETM
+ Landsat data. Redo (2012) applied Landsat series data in conjunction with Chinese–

Figure 5. (a) Frequency of optical sensors applied in the reviewed studies. (b) Frequency of radar
sensors applied in the reviewed studies.
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Brazil Earth Resources Satellite (CBERS-2 and CBERS-2B) in order to correct the
residual banding distortion from Landsat 7 data and to map land use and land cover
change (LULCC) from 1975–2008 in Tierras Bajas, Bolivia. Other approaches com-
bined active and passive sensors as an alternative in obtaining information not affected
under atmospheric conditions (Salas et al. 2002; Zaloti et al. 2006; Lu et al. 2011;
Gutiérrez-Vélez and DeFries 2013; Nascimento et al. 2013). As presented in Figure 5
(b), the dominant sensor among the radar studies was ERS-1/ERS-2 with six studies,
followed by ALOS PALSAR (five studies), JERS-1 (four studies), and SIR-C/X (three
studies). A small number of articles were found for the sensors RADARSAT 2 and
COSMO Sky Med, with only one study for each sensor. For instance, Reiche et al.
(2013) integrated ALOS PALSAR with Landsat images to monitor tropical and forest
degradation in the central part of the South American Republic of Guyana. SAR and
optical medium-resolution subpixel fraction information were analysed independently
and fused with a decision tree classifier to detect tropical deforestation and degradation
from 2007 to 2010 (Reiche et al. 2013).

4.3. Spatial scale

Throughout the studies reviewed, different spatial scales have been used to assess changes
in forests at local, regional, and global levels (Figure 6(a)). Whereas local (65%) and
regional (26%) scale studies were found to be more frequent, only a few articles assessed
forest variations at a global scale (9%). The majority of articles which fall into this
category focused on detecting changes only, as is regularly done for tropical forests around
the world (Achard et al. 2002, 2001; Hansen et al. 2004, 2008, 2010, 2013; Huang
and Friedl 2014; Shimada et al. 2014). Commonly, this has been done using either wall-
to-wall coverage or statistical sampling strategies from medium-resolution (30 m) to

Figure 6. (a)–(d) Categorization of the studies with regard to spatial and temporal scales, process,
and validation methods.
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coarse-resolution (1 km) data designed to evaluate global land-cover changes. For instance,
a stratified sampling design was implemented by the Forest Resources Assessment (1990)
and the Global Resource Assessment 2000 (FAO 2001) to estimate forest cover and
deforestation. Remote-sensing surveys in the context of the Forest Resources
Assessments for 1990 and 2000 were based on a stratified design which applied predicted
deforestation rates to assign further samples into locations where higher deforestation
activities were expected. Hansen et al. (2008) employed a stratified sampling design to
estimate deforestations from 2000 to 2005 in the pan-humid tropical forest biome applying
MODIS (500 m) imagery based on deforestation data extracted from Landsat images to
quantify the deforestation per sample block. Recently, Hansen et al. (2013) developed
global wall-to-wall forest coverage with a resolution of 30 m by combining the computing
power of the Google Earth Engine and the extensive Landsat data archive to process over
650,000 images in order to estimate forest variations in the tropics from 2000 to 2012.
Following this effort, a global forest or non-forest map was generated by Shimada et al.
(2014) at a resolution of 25 m using annual data sets from 2007 to 2010 based on ALOS
PALSAR horizontal transmitting, horizontal receiving (HH) and horizontal transmitting,
vertical receiving (HV) polarized L-band data; just like Hansen et al. (2013), the global
product aimed at estimating gain and loss of the forest in the tropics.

Assessments performed at the regional scale generally monitored coarser changes in
forests, variation patterns, and few studies on degradation. Regional studies vary in scale,
considering not only broader areas such as the entire Amazon in Brazil (Alves 2002;
Matricardi et al. 2007; Broich et al. 2009) but also the entire country or continent of Latin
America (Huang et al. 2007; Killeen et al. 2007; Clark, Aide, and Riner 2012; Sanchez-
Cuervo and Aide 2013; Vollmar et al. 2013; Gebhardt et al. 2014). A good example of
forest change detection at a continental level is provided by Aide et al. (2012) which
implemented a wall-to-wall approach to assess deforestation and reforestation rates over
the Latin American continent from 2001 to 2010, using coarse-resolution MODIS data on
board Aqua and Terra (250 m). Huang et al. (2007), Killeen et al. (2007), Pacheco,
Aguado, and Mollicone (2014), and Sanchez-Cuervo and Aide (2013) studied the natural
forest cover lost country-wide for Paraguay, Bolivia, Venezuela, and Colombia by imple-
menting coarse (MODIS) and medium resolution (Landsat) data spanning the years from
1975 to 2010. More centralized regional assessments were often settled over the Brazilian
Amazonian region; especially in the states of Rondônia and Mato Grosso (Alves 2002;
Carreiras and Pereira 2005; Matricardi et al. 2007; Egler et al. 2013). Principally, medium
spatial resolution (30 m) data were applied to identify the patterns which led to the
deprivation of forest.

Sixty-five per cent of the articles reviewed (Figure 6(a)) were carried out at a local
level. Similar to regional studies, the majority of the articles were carried out within the
Brazilian region (75% of the studies), mainly covering the states of Mato Grosso,
Rondônia, Pará, and Paraná (Di Maio Mantovani and Setzer 1997; Alves et al. 1999;
Ichii, Maruyama, and Yamaguchi 2003; Ferraz et al. 2005; Morton et al. 2006; Zaloti et al.
2006; Brown et al. 2007; Wynne et al. 2007; Souza and Verburg 2010; Yoshikawa and
Sanga-Ngoie 2011). Local studies were often aiming at understanding the influences of
anthropological activities impacting the forest, giving particular attention to agricultural
expansion and urbanization (Sierra 2000; Nagendra, Southworth, and Tucker 2003;
Armenteras et al. 2006; Morton et al. 2006; Alves et al. 2009; Pinto-Ledezma and De
Centurión 2010; Dávalos et al. 2011; Rodríguez et al. 2012). Unlike the global and
regional scale, local studies more often address forest degradation (Almeida-Filho and
Shimabukuro 2002; Souza et al. 2003, 2005; Souza and Roberts 2005; Matricardi et al.
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2005; Wang, Qi, and Cochrane 2005; Maurício et al. 2015) (15% of the studies); smaller
study areas permit a finer distinction of the disturbances occurring in the forest. In terms
of EO data applied, not only the trend of using medium spatial resolution data (Landsat)
prevails, but also the majority of the studies which incorporated radar data (Van Der
Sanden and Hoekman 1999; Salas et al. 2002; Zaloti et al. 2006; Servello, Kuplich, and
Shimabukuro 2010; Liesenberg and Gloaguen 2013; Rahman and Sri Sumantyo 2012;
Reiche et al. 2013; Nascimento et al. 2013; De Azevedo et al. 2014) were carried out at a
local level. For instance, Ferraz et al. (2005) used Landsat imagery from 1984 to 2002 to
monitor deforested areas in Rondônia state, Brazil. Furthermore, deforestation drivers and
patterns were assessed by Cayuela, Benayas, and Echeverría (2006), and Armenteras et al.
(2011) covered the Mexico and Colombian highlands based on Landsat images, covering
the years 1975–2000 and 1985–2005. Schmidt et al. (1997), on the other hand, applied
ERS-1 data to monitor forest dynamics in the Brazilian Amazon spanning the years 1992–
1994. More recently, Rahman and Sri Sumantyo (2012) used Shuttle Imaging Radar
(SIR – C) and ALOS PALSAR L-band data to quantify deforestation from 1994 to
2004 within the state of Mato Grosso in Brazil.

4.4. Temporal scales

As presented in Figure 6(b), variations in forest cover were studied through bi-temporal,
multi-temporal, or time-series analysis. Studies which encompassed bi-temporal assess-
ments (Saatchi, Soares, and Alves 1997; Alves et al. 1999; Strozzi et al. 1999; Van Laake
and Sánchez-Azofeifa 2004; Shimabukuro et al. 2007; Sesnie et al. 2008; Redo, Joby
Bass, and Millington 2009; Mello et al. 2011) basically estimated changes in the forest by
comparing TMs previously generated from two satellite images obtained at different
points in time. The time span of the majority of the studies varied from 1 to 10 years
locally focusing on the Amazonian region and applying medium-resolution data
(Landsat). Representative examples are the deforestation maps provided by Skole and
Tucker (1993), Alves et al. (1999), and Souza and Verburg (2010) using Landsat images
from 1978 to 1988, 1985 to 1995, and 2000 to 2008 to assess deforestation in the state of
Rondônia, Brazil. Unlike the studies conducted with medium-resolution imagery, some
studies which included radar data assessed changes in the forest considering monthly
spans among the images. For instance, Eva, Conway, and D’Souza (1995) and Strozzi
et al. (1999) applied ERS-1/ERS-2 sensors to discriminate deforested areas in the Amazon
region from May to June (1992) and March to April (1996), with a spatial resolution of
26 m. Recently, Servello, Kuplich, and Shimabukuro (2010) compared TMs obtained
from classified RADARSAT-2 polarimetric images acquired in 2008 and 2009 to detect
forest conversion in the Pará region of Brazil.

Studies which incorporated multi-temporal analysis made up almost 75% of the studies
(see Figure 6(b)). Different from bi-temporal assessments, multi-temporal evaluations
cover longer time periods not only permitting the quantification of the changes in the
forest cover (Alves and Skole 1996; Guild, Cohen, and Kauffman 2004; Sanchez-
Azofeifa, Harriss, and Skole 2001; Salas et al. 2002; Viña, Echavarria, and Rundquist
2004; Arroyo-Mora et al. 2005; Cayuela, Benayas, and Echeverría 2006; Etter et al. 2006;
Reyes Hernández et al. 2006; Renó et al. 2011; Lima et al. 2012) but also providing
information related to the status of the forest (Almeida-Filho and Shimabukuro 2002;
Souza et al. 2003; Matricardi et al. 2007; Reiche et al. 2013; Maurício et al. 2015).
Overall, the focus of the studies varied with the three main applications: identification and
analyses of deforestation patterns (Cayuela, Benayas, and Echeverría 2006; Lira et al.
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2012; Rodríguez et al. 2012; Bianchi and Haig 2013; Egler et al. 2013; Bonilla-Bedoya
et al. 2014), quantification of forest cover increase and decrease (Tucker and Townshend
2000; Viña, Echavarria, and Rundquist 2004; Cayuela, Benayas, and Echeverría 2006;
Michalski, Peres, and Lake 2008; Redo 2012), and assessment of forest degradation
(Souza and Roberts 2005; Broadbent et al. 2008; Joseph, Murthy, and Thomas 2011).
Similar to the bi-temporal analysis, Landsat imagery was identified as the dominant sensor
applied in almost 88% of the studies, whereas MODIS and radar sensors were used less
frequently. With regard to the time steps used to distinguish changes between images,
different temporal patterns were observed. For instance, some studies evaluated changes in
the forest considering regular time intervals between the images (Hayes and Sader 2001;
Alves et al. 2003; Ferraz et al. 2005; Shimabukuro et al. 2006; Killeen et al. 2007;
Michalski, Peres, and Lake 2008; Marsik, Stevens, and Southworth 2011; Beuchle et al.
2012; Lira et al. 2012; Pessoa et al. 2013; Schmitt-Harsh 2013). For example, annual data
from MODIS were used by Hansen, Stehman, and Potapov (2010) to produce global forest
change maps covering the years 2000–2005; a quantification of the global gross forest loss
was derived from the results. Matricardi et al. (2005) assessed selective logging operations
in Mato Grosso, Brazil, by applying annual time-series analysis based on 11-year series of
Landsat imagery (30 m) from 1992 to 2002. The authors concluded that multi-temporal
analysis made it possible to estimate not only the dynamics of deforested and logged areas
but also the interaction among them. Michalski, Peres, and Lake (2008) analysed changes
in the landscape of Alta Floresta (Mato Grosso), Brazil, based on a biennial sequence of
11 Landsat images from 1984 to 1998 and 2000 to 2004 with 30 m resolution in order to
compare deforestation rates over the years and to estimate the influence of human
intervention. Souza et al. (2013) assessed degradation and deforestation rates in the
Brazilian amazon over a period of 10 years using annual Landsat imagery from 2000 to
2010. The results obtained from the study demonstrated a significant decline of annual
deforestation rates by 46% at the end of 2005 and a 20% increment of annual forest
degradation. Based on radar sensors, Filho et al. (2005) evaluated the use of multi-
temporal JERS-1 synthetic aperture radar (SAR) images from 1994, 1995, and 1996 in
order to assess deforestation by comparing forest covers obtained for every year. Shimada
et al. (2014) applied PALSAR images to assess annual rates of deforestation at a global
level covering 2007 to 2010. Different from regular temporal intervals, other studies
applied irregular time intervals between images acquired. Imagery was selected according
to the aim of the study including up to seven time steps over the analysis (Sanchez-
azofeifa et al. 2002; Ichii, Maruyama, and Yamaguchi 2003; Armenteras et al. 2006;
Rodríguez et al. 2012; Bianchi and Haig 2013; Lu et al. 2013). For example, Viña,
Echavarria, and Rundquist (2004) analysed deforestation drivers and rates over the
Colombian and Ecuadorian Amazon using Landsat images from 1973, 1985, and 1996,
thereby comparing the deforestation rates obtained for each of these years. Also, Reyes
Hernández et al. (2006) studied the changes over the forest cover in San Luis Potosí,
Mexico, using Landsat data from 1973, 1985, 1990, and 2000 comparing cover maps
generated for each year. Sánchez-Cuervo et al. (2012) evaluated the use of multi-temporal
ALOS PALSAR data for monitoring the Brazilian Amazon rainforest in the Mato Grosso
state based on non-continuous monthly imagery acquired from 2009 to 2011.

Real time-series analyses are less frequent over the literature reviewed (5%), covering
local and regional assessments. In the studies reviewed, change detection assessments
were conducted in daily, monthly, and yearly intervals (Aide et al. 2012; Clark, Aide, and
Riner 2012; Sanchez-Cuervo and Aide 2013; Huang and Friedl 2014). Different from bi-
temporal analysis, time series can provide a quasi-continuous history of forest
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disturbances and regeneration processes. In terms of the sensor applied, time-series
analysis was mostly based on MODIS data with near-daily global coverage. A good
example is provided by Clark, Aide, and Riner (2012), who assessed land-cover changes
(focusing on deforested areas) within all the municipalities in Latin America spanning the
years 2001–2010. The authors applied 39 MODIS tiles which cover all the study area
calculating annual statistics (minimum, maximum, mean, standard deviation, and range)
for three 4-month periods, two 6-month periods, and monthly intervals throughout the 9-
year observation period. Similar to Clark, Aide, and Riner (2012), Sanchez-Cuervo et al.
(2012) and Sanchez-Cuervo and Aide (2013) conducted a time-series analysis to estimate
deforestation hotspots and forest recovery in Colombia based on the same MODIS data
set and time intervals applied by the previous study, thereby incorporating annual statistics
for the red, near-infrared (NIR), and mid-infrared (MIR) reflectance bands as well as for
the enhanced vegetation index (EVI) from 2001 to 2010.

4.5. Methods employed to map and characterize forest cover

Most approaches for the detection of forest cover dynamics require the initial mapping or
characterization of forests based on satellite data acquired at the beginning and at the end
of the respective period of investigation. Particularly, the early studies thereby delineated
forest areas based on visual photointerpretation of satellite imagery and geographic
information systems (GISs) as seen in Skole and Tucker (1993), who characterized the
forests in the Brazilian Amazon based on photo interpretation of 210 panchromatic
photographic images from the Landsat TM from 1978 to 1988 to assess the quality of
forests including deforestation and fragmentation processes. The majority of studies,
however, use automated, statistical classification approaches of satellite data to identify
and differentiate between individual land-cover classes, thereby taking into account their
respective spectral properties, textural features, and object characteristics (e.g. size,
texture, shape, and context). Particularly useful for the classification and characterization
of forests, and vegetation in general, are the contrasting spectral characteristics of photo-
synthetically active vegetation in the red (from 0.4 to 0.7 µm) and NIR (from 0.7 to
1.1 µm) portion of the spectrum, which forms the basis of nearly every vegetation index.
This is why vegetation indices, such as the normalized vegetation index (NDVI), soil-
adjusted vegetation index (SAVI), modified soil-adjusted vegetation index (MSAVI), and
EVI are, besides the sensor’s reflectance bands, the most used input features for classify-
ing forest ecosystems based on optical sensors. But, also the outputs of image transforms
such as the higher-order components of principal component (PC) analyses (Hayes and
Sader 2001; Hartter et al. 2008; Guild, Cohen, and Kauffman 2004; Yoshikawa and
Sanga-Ngoie 2011) or the indices of brightness, greenness, and wetness resulting from
a tasselled cap (TC) linear transformation (Crist and Cicone 1984; Schowengerdt 1997;
Guild, Cohen, and Kauffman 2004; Hayes and Cohen 2007; Beuchle et al. 2012) are used
for improving forest differentiation in advance of change detection studies. Guild, Cohen,
and Kauffman (2004), for instance, applied a TC prior to the classification of forest and
forest change in Rondônia, Brazil, based on Landsat 5 and Landsat 4 TM data. The TC
thereby not only reduced the spectral redundancy of the visible and infrared bands but
also enhanced the contrast between intact forests, cleared areas, and regrowth.

Forest classification approaches based on radar sensors differ by bands and polariza-
tion. The most frequent bands encountered over the articles reviewed were the L-band
(from 15 to 30 cm), C-band (from 4 to 8 cm), and the X-band (from 2.5 to 4 cm) along
with HH and HV polarization. The application of different wavelength bands not only
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results in different spatial resolutions but also shows effects on the capacity to penetrate
the land surface and cloud cover. Higher penetration occurs when the wavelength
increases, meaning that the L-band is less sensitive to cloud cover and can penetrate
deeper into the forests than the C- or the X-band. Generally, forest characterization can be
performed by any band available in radar. Overall, shorter wavelengths (2–6 cm) are
applied best for detecting tree leaves (canopy). At these lengths, the surface scattering
from the soil is minimal and volume scattering prevails. Furthermore, shorter wavelengths
are more sensitive to small changes in the surface (e.g. regrowth) and offer more
information related to vegetation classes (e.g. forest types). Longer wavelengths
(10–30 cm), on the other hand, are more suitable to differentiate forest from non-forest
cover due to their deeper penetration into surfaces and less impact by vegetation covers
(Achard and Hansen 2012). Particularly, in radar-based studies, textural characteristics of
the land surface, i.e. the spatial variation of the image tone as a function of the scale, are
important features for the identification and characterization of forests (Servello, Kuplich,
and Shimabukuro 2010; Filho et al. 2005; Salas et al. 2002; Shimada et al. 2014; Cutler
et al. 2012). Particularly, the well-known occurrence and co-occurrence measures, such as
range, mean, variance, homogeneity, dissimilarity, contrast entropy, skewness, second
moment, and correlation, are among the most often used texture metrics for classifying
radar images (Haralick, Shanmugam, and Dinstein 1973). For instance, Cutler et al.
(2012) applied a grey level co-occurrence matrix (GLCM) on JERS-1 (L-band) and
Landsat images obtained in 1992 and 1995, respectively, to estimate tropical forest
biomass in Manaus Brazil. In this study, the texture measures calculated from the
GLCM were entropy, energy, correlation, contrast, dissimilarity, homogeneity, second
moment, and variance, which were shown to be very useful to differentiate tropical forest
types.

Additional popular features used for classifying forests in Latin America were infor-
mation on topography, such as elevation, azimuth, slope, or solar duration as derived from
digital elevation models (DEMs), first and foremost originating from the Space Shuttle
Radar and Topography Mission (SRTM) (Di Maio Mantovani and Setzer 1997; Guild,
Cohen, and Kauffman 2004; Sesnie et al. 2008; Yoshikawa and Sanga-Ngoie 2011; Egler
et al. 2013; Sanchez-Cuervo and Aide 2013; Souza et al. 2013; Leinenkugel et al. 2014).

Among the reviewed studies, 20% of all studies used unsupervised classification
approaches (Tucker and Townshend 2000; Hayes and Sader 2001; Ichii, Maruyama,
and Yamaguchi 2003; Souza et al. 2003; Wang, Qi, and Cochrane 2005; Anand 2006;
Huang et al. 2007; Killeen et al. 2007; Michalski, Peres, and Lake 2008; Bianchi and Haig
2013; Caldas et al. 2013), whereby the ISODATA clustering algorithm was more popular
than the basic k-means optimization algorithm. Among the supervised classification
approaches (Sánchez-Azofeifa et al. 1999, 2001; Sierra 2000; Nagendra, Southworth,
and Tucker 2003; Armenteras et al. 2006; Cayuela, Benayas, and Echeverría 2006;
Rodríguez et al. 2012; Lu et al. 2013; Paneque-Gálvez et al. 2013), most studies applied
the traditional maximum likelihood classification (Alves and Skole 1996; Sanchez-
Azofeifa, Harriss, and Skole 2001; Ferraz, Capão, and Vettorazzi 2006; Redo 2012)
followed by conventional non-parametric decision tree algorithms (Roberts et al. 2002;
Morton et al. 2006; Marsik, Stevens, and Southworth 2011; Reiche et al. 2013; Pacheco,
Aguado, and Mollicone 2014; Sun et al. 2014). Later, with increasing popularity of more-
sophisticated machine learning algorithms, Random Forests classifiers (Clark et al. 2010;
Aide et al. 2012; Sánchez-Cuervo et al. 2012; Gutiérrez-Vélez and DeFries 2013) were
also applied; however, no study on forest cover dynamics for Latin America used modern
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non-parametric classifiers, such as support vector machines (SVMs) or artificial neural
networks (ANNs).

Besides the traditional pixel-based approaches, object-based classification approaches
for forest mapping have been used in Latin-America, however only since the beginning of
2010 (Renó et al. 2011; Beuchle et al. 2012; Nascimento et al. 2013; Vo et al. 2013;
Gebhardt et al. 2014). Object-based approaches first aggregate image pixels into spectrally
homogenous image objects using an image segmentation algorithm and then classify the
individual objects. The generation of meaningful objects makes it possible not only to
integrate additional spectral information compared to single pixels, but also to include
complementary spatial, textural, and contextual object properties to potentially improve
the classification accuracy (Blaschke 2010). Nascimento et al. (2013), for instance, used
criteria, such as the minimum area of objects, as well as contextual information, such as
the distance to the coast or to other classes, to improve the mapping of mangrove forests
along the Brazilian coastline. Also, Gebhardt et al. (2014) used a set of object metrics
(minimum, maximum, average, and standard deviation) calculated for multi-temporal
NDVI metrics, elevation, slope, and aspect, resulting in a total set of more than 200
features per object, which were used for classifying forest-cover and other land-cover
classes for the whole of Mexico.

Both pixel- and object-based classifications assume that forest classes are mutually
exclusive with discrete boundaries separating each other. Forest ecosystems, though, may
vary in space in a continuous manner; this can be observed for example in the gradual
transition from forests over woodlands to woody grassland, with the consequence that
traditional maps with discrete boundary provide an unrealistic representation of such
ecosystems (Foody 1999). Furthermore, particularly when using coarse-resolution sen-
sors, such as MODIS, MERIS, or SPOT-vegetation, for the mapping of heterogeneous and
complex forest mosaics, mixed pixels may emerge, where multiple land-cover types occur
within the extent of the sensor’s projected instantaneous field of view. It has been shown
that upon assigning mixed pixels to a specific single type of land cover, results of inferior
mapping performance are being obtained (Fernandes et al. 2004; Foody et al. 1997; Friedl
et al. 2000; Leinenkugel et al. 2013) and in particular gives rise to an overall under-
estimation of non-dominant land-cover types (Nelson and Holben 1986; Braswell et al.
2003). Moreover, the classification of continuous quantitative information into discrete
labels is implicitly accompanied by information degradation. For most algorithms, this
leads to an increase in uncertainty that often remains hidden in the output maps and thus
cannot be accounted for during further analysis (Rocchini et al. 2013). In this respect, the
use of continuous variables, such as fractional forest cover estimates or biophysical
properties such as tree cover at the subpixel level, has proved to be more effective in
the quantification and characterization of forest ecosystems, particularly in the case of
gradients and mosaics in the landscape (Adams et al. 1995; Carpenter et al. 1999; DeFries
et al. 1997; DeFries, Hansen, and Townshend 2000; Fernandes et al. 2004; Hansen et al.
2002, 2005; Tottrup et al. 2007; Gessner et al. 2013). Methods to derive these continuous
variables include linear mixture models (Adams et al. 1995; DeFries, Hansen, and
Townshend 2000; Scanlon et al. 2002; Lu, Moran, and Batistella 2003; Kuenzer et al.
2008; Kumar, Kerle, and Ramachandra 2008), fuzzy membership functions (Foody and
Cox 1994), neural networks (Foody et al. 1997; Carpenter et al. 1999; Braswell et al.
2003; Liu et al. 2004; Liu and Wu 2005), SVMs (Esch et al. 2009; Leinenkugel, Esch, and
Kuenzer 2011), and regression trees (DeFries et al. 1997; DeFries, Townshend, and
Hansen 1999; Hansen et al. 2002; Gessner et al. 2013). The use of continuous variables
for the analysis of forest cover and their dynamics in Latin America however is almost
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limited to the physically based linear mixture models, such as those applied by Wang, Qi,
and Cochrane (2005), Souza et al. (2003, 2005), or Filho et al. (2005). Souza et al. (2003,
2013), Filho et al. (2005), and Roberts et al. (2002), for instance, applied linear spectral
unmixing to separate subpixel fractions of green vegetation (GV), non-photosynthetic
vegetation (NPV), soils, and shades for studying forest degradation and deforestation in
the Brazilian Amazon. Wang, Qi, and Cochrane (2005) by contrast applied a two-
component linear model based on the assumption that logged areas consist of only two
components, i.e. tree canopies and open areas. The resulting forest canopy fractional cover
was then used for identifying forest degradation caused by selective logging in the
Amazonian state of Mato Grosso, Brazil. Ichii et al. (2003) in contrast used a multi-
scale regression approach to derive continuous forest cover fraction from monthly
Pathfinder AVHRR Land (PAL) NDVI layers at 8 km resolution. Therefore, higher-
resolution Landsat MSS, TM, and ETM+ data were classified and aggregated to
AVHRR resolution to derive Landsat-based forest cover fractions for calibration. A
logarithmic relationship between the AVHRR-derived NDVI and Landsat-based forest
cover fractions could then be examined, which was finally utilized to estimate the forest
cover fraction from the AVHRR-based NDVI data. Also, Hayes and Cohen (2007) used
an approach for estimating proportional forest change as a continuous variable for a study
site in Central America based on a regression model that relates multispectral, multi-
temporal MODIS data to reference change data sets derived from a Landsat analysis.

4.6. Methods employed to assess forest cover dynamics

Forest dynamics are defined as the change in the shape and structure of a forest, related to
its underlying physical and biological forces. For forest cover dynamics, two main
elements are recognized: forest disturbance and forest succession. Forest disturbances
are caused by changes induced primarily by fire, flood, human influence (logging), and
diseases, whereas forest succession is characterized by the recovery of the vegetation after
a disturbance event (GOFC 2010). Several methods have been applied to monitor the
dynamics of tropical forests; a summary of the main change detection approaches is
presented in Tables 2 and 3.

Early studies (Skole and Tucker 1993; Alves and Skole 1996; Alves et al. 1999; Alves
2002) assessed forest changes by delineating logged areas through on-screen digitalization
of disturbed areas based on medium- (Landsat, SPOT) to high- (IKONOS) spatial
resolution imagery and GIS. For instance, Alves (2002) assessed the spatial patterns of
deforestation in the Brazilian Amazon by manual interpretation of forest clearings based
on Landsat MSS and TM images from 1991 to 1997. Manual interpretation has been used
not only to quantify clearings in natural forest but also to identify degraded areas resulting
from selected logging operations (Matricardi et al. 2005; Souza et al. 2003). While manual
interpretation works particularly well for spatial assessments, including geometric, tex-
tural, and contextual characteristics of deforestation patterns, and for the general inter-
pretation of direct deforestation drivers, this approach is rather time-consuming and less
effective in quantitative, wall-to-wall assessments of forest cover dynamics. Matricardi
et al. (2007) tested the performance of an automatic textural algorithm against manual
interpretation to identify selective logging operations in the Brazilian Amazon based on
multi-temporal analysis of Landsat images obtained in 1992, 1996, and 1999. The author
concluded that visual interpretation (92.8%) and automated techniques (90.2%) were
equally effective in detecting selectively logged areas. However, visual interpretation
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approaches were considered to involve a far greater workload and the precision of the
final product was associated with the skills of the interpreter.

A rather simple but very effective approach to identify and evaluate forest cover
dynamics is the post-classification comparison. The post-classification approach is per-
formed by generating independent classification results from two images obtained in
different time periods and subsequently compared pixel-by-pixel or object-by-object
(Sesnie et al. 2008; Hayes and Sader 2001; Van Laake and Sánchez-Azofeifa 2004;
Arroyo-Mora et al. 2005; Huang et al. 2007; Pinto-Ledezma and De Centurión 2010;
Servello, Kuplich, and Shimabukuro 2010; Souza and Verburg 2010; Lira et al. 2012;
Bianchi and Haig 2013; Caldas et al. 2013; Pessoa et al. 2013). By effectively tagging the
classification results, a comprehensive matrix of change is generated and change classes
can be labelled by the expert. The strength of this approach lies in its capacity not only to
identify change but also to gain specific information on what has changed, e.g. forest to
grassland (from–to change). However, this approach can only be applied in a bi-temporal
manner and therefore requires multiple bi-temporal comparisons when more than two time
points are compared. As an example, Reyes Hernández et al. (2006) studied the changes
in forest cover and land use in San Luis Potosí, Mexico, from 1973 to 2000. The study
applied a multiple bi-temporal comparison of paired Landsat images from 1973 to 1985,
1985 to 1990, and 1990 to 2000 to obtain changing rates from forest cover and land use
over time.

However, this approach requires highly accurate base maps, since errors caused from
misclassifications of the individual maps will multiply in the final change map (Hussain
et al. 2013); particularly in land-cover maps derived from low-resolution sensors, uncer-
tainty levels often are higher than levels of area changes. As a consequence, post-
classification comparisons based on low-resolution sensors frequently result in large
proportions of spurious change (Achard and Hansen 2012; Herold et al. 2008; Kuenzer,
Leinenkugel, et al. 2014), hampering the identification or real changes in the ground.
Furthermore, traditional classification, where each pixel belongs to the class it most
closely resembles, prohibits the identification of gradual processes over time, as evident
in the case of forest degradation or selective logging or when forest cover within a coarse-
resolution pixel is successively converted or removed over periods of several years. By
contrast, change detection approaches based on continuous variables permit the differ-
entiation of gradual changes at a pixel level and incorporate information associated with
the quality of the stand. Recent change detection approaches on continuous variables
identify change by the well-established image algebra approach (Borak, Lambin, and
Strahler 2010; Haertel, Shimabukuro, and Almeida-Filho 2004; Hansen and DeFries
2004; Leinenkugel, Esch, and Kuenzer 2011), whereby a difference image is calculated
from the data sets of two respective dates and a threshold is set to differentiate between
significant and insignificant changes. Typically, the threshold is based on a multiple of the
difference image standard deviation, based on the assumption that change pixels generally
represent outliers within the difference image (Hansen and DeFries 2004). Greenberg
et al. (2005) applied image differencing over the neo-tropical rain forest in the National
Park Yasumi located in the eastern region of Ecuador based on multi-temporal analysis of
seven Landsat scenes between 1993 and 2002. As continuous variables, the authors
derived shadow fractions from the Landsat data being more sensitive for vegetation-to-
vegetation and vegetation-to-non-vegetation changes in comparison to ordinary vegetation
indices. Lighter regions (less shadow) were indicative of anthropogenically disturbed
areas while darker regions (more shadow) were indicative of late successional forest.
Finally, the individual shadow fraction images were pairwise compared and a
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deforestation occurrence was identified on a pixel basis when more than three standard
deviations of the shadow fraction difference image were observed.

Besides the simple image-differencing technique also more complex relative change
detection methods were developed for the identification of forest dynamics that are
applied directly on the surface reflectance bands. Spectral–temporal transform approaches,
such as PC analysis (Hayes and Sader 2001; Guild, Cohen, and Kauffman 2004), for
instance, were applied to multi-temporal image stacks in order to extract patterns indica-
tive of change over time. Guild, Cohen, and Kauffman (2004), for instance, tested three
methods of change detection to map deforestation and land-cover change among 1984,
1986, and 1992 in Rondônia, Brazil, based on three Landsat 4 and Landsat 5 TM scenes.
The three indices of brightness, greenness, and wetness resulting from a TC transform
formed the basis for a nine-layered multi-date TC data stack. Furthermore, a PC transform
was applied on this data stack to further highlight land-cover changes evident in the
resulting component layers. Finally, the multi-temporal TC data stack, a manual selection
of three PC layers, as well as two difference images of the TC image date pairs were each
classified based on a maximum likelihood classification for the identification of land-
cover changes. The authors conclude that the multi-date TC composite classification had
the best accuracy in identifying forest dynamics.

Most of the studies reviewed analyse forest dynamics on a bi-temporal basis
or for only a few points in time. However, continuous time series of low- to
medium-resolution sensors, such as MODIS or Landsat, theoretically allow for a
quasi-continuous reconstruction of forest disturbance and regeneration histories over
observation periods of several decades. However, only very few studies actually exploit
the large potential of continuous spectral–temporal trajectories for the detection and
analyses of forest dynamics, as seen in Huang et al. (2010), Kennedy, Yang, and Cohen
(2010), Griffiths et al. (2013), and Leinenkugel et al. (2015). Among the studies
reviewed, only four authors applied real trajectory-based or time-series-based analyses
(Aide et al. 2012; Clark, Aide, and Riner 2012; Sanchez-Cuervo and Aide 2013;
Huang and Friedl 2014). Clark, Aide, and Riner (2012) applied 250 m MODIS time-
series data at 16-day intervals to produce annual land-cover maps for Latin America
and the Caribbean between 2001 and 2010. Finally, land-cover proportions were
calculated for individual municipality- and biome-zones and a linear regression
model was applied to these statistics to identify trends in land cover over the 10-
year observation period. Sánchez-Cuervo et al. (2012) and Sanchez-Cuervo and Aide
(2013) applied the same data basis and methodological approach to statistically identify
land-cover trends and hotspots of land-cover change at varying scales (country, biome,
ecoregion, and municipality) over the same 10-year period for Colombia. Huang and
Friedl (2014) tested a distance metric-based change detection method for identifying
changed pixels at annual time steps using 500 m MODIS time-series data. The
approach utilizes distance metrics to measure the similarity between a pixel’s annual
time series to annual time series for pixels of the same land-cover class as well the
similarity between annual time series from different years at the same pixel. The
developed method successfully identified pixels affected by logging and fire distur-
bance in temperate and boreal forest sites in Mato Grosso, Brazil. Hayes and Cohen
(2007) by contrast performed an analysis to highlight the distinct spectral change
patterns from year-to-year in response to the possible land-cover trajectories of forest
clearing, regeneration, and changes in climatic and land-cover conditions through an
analysis of six dates (2000–2005) of Landsat data for a study area located in northern
Guatemala. Ferraz, Vettorazzi, and Theobald (2009) prepared an 18-year Landsat TM
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and ETM+ time series in biennial intervals to examine the aspects of tropical defor-
estation through rates and patterns of change. Furthermore, the authors developed four
trajectory-based metrics, i.e. annual deforestation rate, secondary forest mean propor-
tion, mean time since deforestation, and deforestation profile curvature, to measure
historical changes. The authors concluded that the tested indicators were able to
represent the main temporal land-use changes considered related to deforestation,
cumulative effect, and forest regeneration. Others studies in Latin America also use
continuous time series for analysing forest dynamics over long time periods, such as
Roberts et al. (2002), Alves et al. (2009), Morton et al. (2006), Hartter et al. (2008), or
Marsik, Stevens, and Southworth (2011). However, these studies actually do not apply
trajectory-based methods for detecting forest dynamics at a pixel level. Instead, forest
cover proportions for the study area are aggregated for each year and the long-term
trajectory of forest cover proportions for the entire study area was interpreted by the
authors.

5. Forest cover dynamics within the Atlantic Forest and Chaco areas of Paraguay

The following section provides a comprehensive overview of the deprivation of the
forest in the Paraguayan region over the last 40 years. A closer look into the rates of
deforested areas, importance of the ecosystems affected, and the scarce number
studies which applied EO to analyse the changes is provided. The aim of this section
is to emphasize the significance of spreading the study areas over the Latin
American continent in regions equally important and threatened as the Amazonian
rain forest.

Paraguay has lost the majority of its natural forest cover in just 40 years, presenting
one of the highest rates of deforestation in the world. Annually, forest losses were
estimated to be approximately 1.64% from 1984 to 1997 and 0.9% until 2011 (Hansen
and DeFries 2004; FAO 2011). Recent estimations demonstrate the remaining forest cover
in Paraguay at 17.58 Mha – spanning almost 44% of the total land area of the country.
Further analysis revealed that 80% of the remaining forests were located within the
western region of the country, an area characterized by poor soil conditions and extended
dry seasons not suitable for agriculture, as it covers 60% of the country’s surface but
contains less than 5% of the population (Macedo and Cartes 2003). Unlike Paraguay’s
western region, the eastern area of the country possesses less than a quarter of the forest
coverage, with the vast majority of the population and also includes the Atlantic Forest
ecoregion. The following section provides a brief characterization of the Paraguayan
regions, deforestation drivers, and a review of the approaches implemented in order to
assess variation in the forest cover using optical data.

5.1. Site characterization

Paraguay is located in the heart of South America, located between 19º 18ʹ and 27º 36ʹ S and
54º 19ʹ and 62º 38ʹ W. The country has a total area of 406,752 km2, neighbouring Brazil,
Argentina, and Bolivia. Geographically, it is divided into two natural regions: the Oriental
(eastern) region, which has a surface of 159,827 km2, and the Occidental region (western),
containing a total area of 246,925 km2. The eastern part of the country is characterized by a
high variety of physical and geographical aspects, containing forest, grasslands, and the vast
majority of the country’s croplands. Furthermore, it encompasses remnants of the Atlantic
Forest ecoregion, one of the largest areas for biology conservation (Di Bitetti, Placci, and Dietz
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2003). According to an analysis carried out by WWF based on data related to biodiversity, it is
acknowledged that the Atlantic Forest is one of the most complete ecoregions in the world (Di
Bitetti, Placci, and Dietz 2003), with around 20,000 plant species and almost 13,000 fish
vertebrate species (Mittermeier et al. 1999). The Atlantic Forest is a combination of 15
ecoregions, starting from the Atlantic coast of Brazil, passing through the eastern region of
Paraguay, and finally reaching the northwestern region of Argentina. Nevertheless, the Atlantic
Forest is one of the most threatened tropical rain forests at the moment; only 7% of the original
cover remains (Di Bitetti, Placci, and Dietz 2003). The biggest area of the forest within the 15
ecoregions is located in the Atlantic Forest of Upper Paraná, spanning an area of 471,204 km2.
One of the major aquifers in the world is located under the Atlantic Forest of Upper Paraná,
almost 1.2 million km2, which includes approximately 40,000 km2 of freshwater (Di Bitetti,
Placci, and Dietz 2003). By 1945, the Atlantic Forest of Upper Paraná in Paraguay covered
almost 55% of the eastern region of the country (that is approximately 8.806 Mha); however,
nowadays, only 13% of the forest cover remains (Fleytas 2007).

The Occidental region of Paraguay, also known as the Gran Chaco region, is well
known for being one of the major wooded grasslands in central South America. The Gran
Chaco is shared by four countries (Argentina, Brazil, Bolivia, and Paraguay) and is thus
considered to be the second largest biome in South America, after the Brazilian Amazon.
The general climate of the Chaco demonstrates a remarkable variation in precipitation and
humidity, differing from east to west, resulting in higher humidity near Rio Paraná in
Paraguay, Argentina, and Brazil (Mereles and Rodas 2014).

The aridity of the region increases towards the West, reaching the driest part along the
Andean foothills. In spite of its dryness, the area is also known for its wetlands, which can be
found in some parts of the Paraguayan Chaco. The precipitation of the region is rather low
compared with the Oriental region of the country, varying from 600 to 1000 mm annually.
The dominant vegetation throughout is woodland, also known as thorn forest and grassland.
The most commonly found tree species within the area are Prosopis spp. Parkinsonia and
Tabebuia spp. (FAO 2001). During the period from 1985 to 1990 and 1996 to 2001, around
9% (6858 km2) of the original forest cover was lost. Although the rates of deforestation are
less than that of the Oriental region, the loss was considered to be in relation to the population
density; only 2% of Paraguay’s inhabitants settle within the western region.

5.2. Deforestation drivers and the actual state of the forest

Between 1945 and 1975, intensive wood harvesting activities took place in the eastern
region of Paraguay primarily due to the vast amount of forest concentrated there. Most of the
harvesting activities were concentrated in the areas of Concepcion, Upper Paraná, Caaguazú,
Amambay, San Pedro, and Itapúa (regions of the Atlantic Forest of Alto Paraná). The
process of deforestation increased in the early 1950s, due to a process of agricultural
expansion, human settlements, and especially colonization programmes (Fleytas 2007).
During the government regime of General Alfredo Stroessner (1954–1989), intensive
programmes for the agricultural development of the land were introduced which thus
reduced pressure on the central areas of the Oriental region. The areas that were considered
to be empty or without appropriate utilization were promoted by the state, in order to initiate
the colonization, without consideration of the indigenous inhabitants of these areas. This
programme was imposed without any consensus or participation of local communities
(Fleytas 2007). Law 854 of the Agrarian Statute established in 1963 recognized the right
to the exploitation of the lands for agricultural purposes – including lands with forest cover
tagged under the name of ‘wastelands’. The lack of appropriate definition of land that is
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indeed suitable for production or conservation was one of the main factors in deforestation
over the years (Fleytas 2007). After the implementation of the colonization programmes and
the agricultural expansion, the rates of deforestation in Paraguay were over 2000 km2 per
year and it thus became one of the countries with the highest rates of the deforestation at an
international level (Macedo and Cartes 2003). The process of deforestation occurred in the
Oriental region during the early 1940s until the late 1980s, resulting in the loss of
4,900,000 ha of forest (around 123,000 ha per year). During the 40-year span, the peak in
deforestation (1968–1976) saw 212,000 ha of forest logged per year. Further studies
demonstrated that the remaining forests were constituted by residual patches (32.2%) and
low commercial value stands (68.8%). Although not as severe as in the Oriental region
during this period, deforestation rates within western areas reached almost 45,000 ha per
year (Mereles and Rodas 2014). Following the early 1990s, the forest continued to disappear
at an alarming rate. By the end of 1991, 32% of the eastern region was covered by forest
(45,000 km2 approximately); however, by the end of 2001, this was reduced to 22%. Most of
the forest loss was attributed to the conversion of forest to agricultural lands, timber
harvesting, and small scale invasion into forests by rural settlers (Guyra study under the
supervision of Maryland). More recent studies carried out by the Forest Engineering Faculty
of the National University of Asuncion-Paraguay, in consortium with the Forestry and Forest
Products Research Institute (FFPRI) from Japan, applied supervised classification over
Landsat 5 images to estimate the forest cover of the Atlantic Forest region for the years
1990, 1995, 2000, 2005, and 2011 (Figure 7). The resultant analysis exhibited that approxi-
mately 1,550,000 ha of the forest was logged during the study period, whereas the
Occidental region presented an annual rate of approximately 174,000 by 2008 (Caldas
et al. 2013). According to several authors, it is important to establish not only the direct
drivers affecting the forest, but also the external factors that are equally crucial, such as
failures within the environmental policies, extensive corruption associated with lack of
monitoring programmes and conservation laws (JICA 2002; Yanosky and Cabrera 2003;
FAO 2004; Quintana and Morse 2005; Wright et al. 2007).

Only a few articles which encompassed the Paraguayan territory were found during
the review. A total of four studies (Huang et al. 2007, 2009; Caldas et al. 2013; Mereles
and Rodas 2014) were carried out in the country itself and three additional studies
(Gasparri and Grau 2009; Clark et al. 2010; Hoyos et al. 2013) were conducted in the
border between Argentina and Paraguay. Although variations in the forest cover have
been assessed continuously by NGOs (WWF and Guyra Paraguay) and governmental
institutions (National Forestry Institute and Ministry of Environment) no publications of
the results were found within indexed journals. Most of the outcomes from the investiga-
tions are only available in internal reports of the institutions.

6. Discussions

In the previous sections, an overview of the remote-sensing approaches on tropical forest
dynamics in Latin America was provided. In the following section, we summarize and
discuss the main findings of this review article along with the resultant needs of further
studies on the dynamics of tropical forest in Latin America. The emerging needs of studies
are addressed not only to the scientific community dealing with innovative remote-sensing
approaches, but also to environmental programmes, policymakers, and conservation institu-
tions which rely on this valuable information to develop further strategies and policies.
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6.1. Summary of main findings and results

Within the articles reviewed, several products were obtained from the different approaches
discussed previously. For instance, global forest products became available in the earliest
1990s from coarse-resolution imagery (MODIS, AVHRR, or MERIS) varying from 1 km
to 300 m resolution. More recent improvements in change detection procedures allowed
the generation of global forest change products with higher resolutions, varying from 30
to 25 m based on Landsat and ALOS PALSAR L-band HH and HV polarization data
(Hansen et al. 2013; Shimada et al. 2014). The vast majority of the articles focused on the
understanding of deforestation and degradation processes, identifying change patterns,
hotspots, and drivers. As mentioned repetitively within several sections in this article
(Sections 3.1, 4.3, 4.5, 4.6, and 5.2), the constant advance of agricultural crops over
natural areas still remains as the main threat affecting the forest in Latin America. In terms
of EO data applied, the Landsat satellite was by far the most used sensor (see Figure 6(a)).
Other EO data less used such as ASTER, CBERS, IKONOS, QuickBird, and SPOT were
incorporated primarily to fill in the gaps not covered by the Landsat satellites, or as means

Figure 7. Atlantic Forest loss between the years 1990 and 2011 (Source for the forest cover layer
for 1990 and 2011: FFPRI project and the Department of Statistics, Surveys and Census).
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of validation. Similar to the sensors cited above, studies which applied radar data (ERS-1/
ERS-2, JERS-1, SIR-C/X, ALOS PALSAR, RADARSAT 2, and COSMO Sky Med) were
scarce and were mainly conducted in the Brazilian region. As observed in Figure 5(b),
most of the radar studies were carried out with ERS-1/ERS-2 data at a local level based on
bi-temporal approaches to identify forest cover changes.

Over the articles reviewed, deforestation and degradation maps were obtained by
applying a variety of change detection methods (as described earlier in Section 4.6); the
methodologies differed from each other according to the data available and the main
objective of the research. The change detection technique is an inclusive procedure that
requires the cautious consideration of each step: the objective of the change detection
analysis, selection of remotely sensed data, image processing, extraction of variables from
satellite imagery, selection of suitable change detection technique, and final evaluation of
the results. Overall, deforestation maps were obtained through manual interpretation,
TMs, or continuous variables conducting bi-temporal, multi-temporal, or real time-series
analysis. The inclusion of continuous variables such as vegetation indices, subpixel
vegetation fractions, continuous fields of tree cover, PCA components, or TC metrics
has clearly improved classification accuracies and change detection precision.

Contrary to deforestation, degradation analysis was more difficult to accomplish. First,
forest degradation must be mapped within a short period of time, since the spectral
signatures of the disturbed forest becomes less distinct already after the first year.
Second, forest degradation can be confused with natural disturbances such as seasonal
changes or wind throws. Third, lack of economic resources designated for capacity
building on the management and operation of algorithms and software’s capability to
detect degraded forest. Even though over the articles, a standardized protocol to assess
forest degradation was not found, several methodologies which included fraction images
(GV, NPV, soils, and shades) and other continuous variables (NDVI, SAVI, MSAVI, PC,
and TC) as well as textural metrics successfully detected logged areas expanding the
detection time up to 3 years after the disturbance occurrence.

Generally, the validation of classifications and the forest change maps was achieved
through ground control data as presented in Figure 6(d). When true ground data were not
available, alternative methods such as the use of high-resolution imagery (ASTER,
IKONOS, Quickbird, SPOT), aerial photography, or previous knowledge from experts
of the area were often applied. Even though these substitution methods were shown to
improve the accuracy of the results, some authors agreed that ground control data remain
as the most effective method (Wang, Qi, and Cochrane 2005; Achard et al. 2010).

6.2. Current needs and challenges

Presently, there is an ongoing necessity for more accessible, fast, and precise information
on the world’s forest dynamics among the scientific community, environmental institu-
tions, monitoring programmes, and governmental entities. The vast majority of the articles
reviewed responded to at least one of the following questions: Which type of vegetation
cover is changing and at what rate? What are the causes and factors of deforestation? Are
these causes natural or anthropological (Yoshikawa and Sanga-Ngoie 2011)? Despite
constant advances in remote-sensing technologies, the data generated so far appear not
to be sufficient to satisfy the growing demand for information in terms of spatial extent,
temporal resolution, and availability. For instance, deforestation and degradation pro-
cesses occur on a daily basis and on different scales all over Latin America; yet many
countries do not have the economical means or governmental support to introduce
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monitoring programmes addressed to assess disturbances of the forest. An exception is the
Brazilian governmental project ‘Programa Despoluição de Bacias Hidrográficas or Basin
Restoration Program’ (PRODES), carried out through INPE, which monitors the forests
over the Legal Amazon region (GOFC-GOLD 2010). The programme produces annual
wall-to-wall forest cover maps based on Landsat imagery (GOFC-GOLD 2010), covering
an area of approximately 5 M km2 using a minimum unit area of 6.25 ha. Complementary
to PRODES, since May 2005, the Brazilian government implemented a near real-time
monitoring system called Detecção de Desmatamento em Tempo Real (DETER), capable
of detecting forest disturbances larger than 25 ha (GOFC-GOLD 2010) in a 15-day
interval on the basis of MODIS and CBERS satellite data. In addition, in 2008, a new
programme was introduced, called Mapeamento da Degradação Florestal na Amazônia
Brasileira (DEGRAD), to assess degradation particularly from selectively logged opera-
tions by using Landsat images and CBERS. Even though these programmes have been
successfully monitoring the forests for over 15 years (PRODES), the large amount of data,
human resources, and financial resources required to operate such a system is far beyond
affordability for other Latin American countries.

With regard to the spatial resolution of current satellite sensors, coarse-resolution data
have been successfully applied to estimate large-scale forest losses not lesser than
25–100 ha in size. However, since human-induced change processes frequently result in
much smaller spatial patterns, a major part of these changes remain undetected at coarse
resolution even when change detection approaches based on continuous variables are
implemented. This particularly applies for the detection of forest degradation processes
that do not result in forest clearance but only modify the structure of the canopy.
Nevertheless, only coarse-resolution sensors possess the ability to continuously monitor
forest changes in a wall-to-wall manner at regional and global scales. Such detected
deforestation hotspots can subsequently be analysed in detail on the basis of high-
resolution imagery. Additionally, coarse-resolution sensors offer the only opportunity for
almost real-time monitoring of the forest, a service growing on demand by a diverse range
of forest stakeholders. Besides the Brazilian near real-time system DETER, Global Forest
Watch, an open online platform for forest monitoring, also provides almost near real-time
information on forest loss based on 500 m MODIS data at 16-day intervals. On the other
hand, the use of high- to medium-resolution data, originating from RapidEye, SPOT,
Landsat, or the upcoming Sentinel-2 satellite, offers greater opportunities for the detailed
analyses of deforestation patterns, including those of forest degradation processes. In this
respect, these sensors are the most important means in terms of satellite-based monitoring
as part of the REDD+ programme.

With respect to change detection methods, most forest change studies so far have been
based on comparisons of bi-temporal remotely sensed information products. Bi-temporal
approaches, however, only provide a static depiction of land-cover change occurring
between two particular time points, giving no scope for an evaluation of land cover
between these dates, meaning that temporary disturbances occurring between these dates
remain undetected. Furthermore, by only analysing changes at a bi-temporal basis, the
temporal patterns of specific change processes, such as those of cyclical forest harvesting,
e.g. shifting-cultivation practices, cannot be accounted for. With respect to the estimation
of carbon emissions, however, the detection of cyclical forest losses and their differentia-
tion from permanent losses is highly relevant (Leinenkugel et al. 2015). Houghton (2012),
for example, estimated that globally, the harvest of timber and shifting cultivation adds
32–35% more to the net emissions calculated on the basis of deforestation alone. Also,
gradual, long-term degradation or regeneration processes of forests that may result in
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subtle trends within a satellite data time series remain undetectable when data are
compared only at a bi-temporal basis. Trajectory-based change detection approaches
based on long-term time series, in contrast, provide excellent means to reconstruct and
to analyse a quasi-continuous history on forest cover and their disturbances over periods
of several decades. While some studies have already been performed based on continuous
time series, thereby also taking into account temporal disturbance profiles, considerable
potential still exists in the field of trajectory-based change detection approaches.

The scope for further development in this field has to be seen in view of the
extensive archives holding historic satellite data from low-resolution sensors, such as
MODIS, SPOT vegetation, or AVHRR, spanning time periods up to 40 years and are
continuing to grow. In addition, access policies for high- to medium-resolution data
have changed recently, particularly since the USGS released for free to the public its
Landsat archive in 2008. Landsat 8 meanwhile collects more than 700 images per day –
14 times as much as in the 1980s (Wulder and Coops 2014). Future global coverage as
well as free and open data access are continuing to improve with the European Union’s
free Copernicus data policy for the use of the European Space Agency (ESA) Sentinel
satellites. The ESA Sentinel 1 radar satellite currently provides an all-weather day-and-
night supply of imagery at a 12-day repeat cycle and will be joined by the Sentinel-2
satellite in 2015, which will map the Earth’s land area every 10 days at a maximum of
10 m resolution.

6.3. Uneven distribution of the studies

Regarding the distribution of the studies (see Figure 4), the vast majority of the
investigations were carried out within the Brazilian region, particularly in the Brazilian
Amazon (Rondônia and Mato Grosso states). The rapid advances of agricultural crops,
illegal operations, and land grabbing have been common drivers of deforestation in these
areas. However, other countries in Latin America are affected by these land-use and land-
cover transformations to the same degree, often showing deforestation trends much more
severe than observed in the Amazonian region (see Figure 1). The case study over the
Paraguayan region in this review article demonstrates a clear example of how the forests
have been devastated over the years and only a scarce number of studies have been
undertaken to observe the dynamics in this area. The same applies to Peru, Argentina, or
Bolivia, which have been already identified among the regions with the highest rates of
deforestation in the world (Hansen et al. 2013, Shimada et al. 2014). It can be inferred
that the shortage of the studies in these areas is related to a lack of expertise in the area, a
lack of governmental concern, a lack of international interest from the scientific com-
munity, and a lack of financial support for local studies. However, it is important to
mention that several institutions (NGOs) within the Latin American continent are
currently involved in private monitoring programmes and forest assessments at the
regional scale; nevertheless, the data generated are frequently classified as sensitive
data not available for public use.

7. Conclusions

In this review article, a complete overview of the studies of tropical forest dynamics in Latin
America based on EO data was given. A comprehensive categorization of the reviewed studies
with respect to the spatial distribution and areal coverage, the sensors applied and their spatial
and temporal resolutions was provided. Furthermore, forest classification and change detection
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methodologies and their applications in detecting different forest processes were presented.
Finally, a summary of the main results was discussed along with gaps and current research
needs. Based on the findings and discussion in this review article, the major conclusions are:

(1) Studies relating to tropical forest dynamics are mainly centred on the Brazilian
region, especially on the states of Mato Grosso and Rondônia. In view of this,
there is a necessity to expand the study areas to other regions in Latin America,
which are equally important, particularly in the context of the REDD+ pro-
gramme. The Paraguayan case study presented in this article served as an example
to show how forests have been massively devastated over the years and yet only a
scarce number of studies were conducted for this region.

(2) Concerning the scale and sensors used, the majority of the studies were carried
out at a local level applying medium-resolution imagery from the Landsat sensor.
The studies carried out at regional and global levels were mostly based on coarse-
resolution MODIS and AVHRR data. Moreover, only a few studies included SAR
imagery, all of which were performed exclusively for Brazil.

(3) Multi-temporal and bi-temporal studies were often conducted to detect degra-
dation and deforestation processes, covering almost 95% of the studies
reviewed. Change detection methods were mostly based on comparisons of
TMs derived from Landsat imagery or based on image differencing approaches.
Also, the use of continuous variables such as vegetation indices or the outputs
from PC or TC analyses were regularly applied to increase the accuracy of
detected changes.

(4) Studies based on continuous time series of satellite data were less frequent in the
reviewed studies (5% of the studies). Most of these studies applied MODIS time
series spanning observation periods of up to 10 years, thereby also utilizing intra-
annual statistics. Trajectory-based change detection methodologies that analyse
the entire disturbance history of a forest on a pixel basis were rare. In view of this,
more sophisticated change detection approaches are needed that are capable of
utilizing the open data archive of the Landsat sensor or the high-spatial and
temporal resolution of the upcoming Sentinel satellites.

(5) While most studies demonstrate high capabilities for the detection of deforestation
processes, forest degradation was more difficult to identify and remains a chal-
lenge to be mapped even from high- to medium-resolution sensors such as SPOT
or Landsat. Particularly, the rapid advance of secondary vegetation formations
over logged and small cleared areas presents a major constraint on the detection
procedures. Nevertheless, continuous variables for forest characterization, such as
fraction images, were shown to be highly useful for the mapping of degraded
areas even up to 3 years after the actual disturbance event.

(6) All scientific studies focus on the detection of historic forest dynamics. In
view of this, the development of real-time change detection approaches cap-
able to be implemented in monitoring programmes at national levels have to
be further promoted. The extent of Latin America’s forests declines on a daily
basis, but no monitoring programmes are being implemented with the excep-
tion of INPE in Brazil and some operated by NGOs without any governmental
support.

With the continuous expansion of agricultural land, the illegal extraction of timber, and
the increasing demand for natural goods, tropical forest stands remain threatened. In view
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of these developments, there is a necessity to continue the development of methods and
information products in the field of EO, which facilitate the implementation and enforce-
ment of laws, environmental programmes, and policies in order to prevent the depredation
of the remaining natural forest stands on the continent.
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